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Abstract. In this paper, we study monopolistic pricing behaviors within a two-way network. In
this symbiotic production system, independent decision centers carry out an activity which concurs
to the production of different system goods. The players are assumed to know the whole network.
Due to this rationality, they try to capture a share of the profit of the firms who sell the system
goods to the consumers. These double marginalization behaviors are studied within very general net-
works. Conditions with ensure existence and uniqueness are discussed. We even provided a complete
characterization of an equilibrium. Potential applications are also discussed
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1. Introduction

Network activities play a crucial role in our economies. For instance, it is quite
difficult to imagine what would happen if the transportation or the communication
networks break down. These structures even cover a larger scope of economic
activities than one presumes. In fact, if a network is defined by a set of activities
with the property that (i) they are provided by independent decision centers, (ii)
they are related by strong complementaries and (iii) they lead to the production of a
good or a service, many commodities can be identified to network or system goods.
A production process which requires subcontracting can, for instance, be viewed
as a network. This general definition has two major implications. If these activities
are controlled by independent players, each of these agents has a ‘local’ market
power. Moreover if these activities are strongly related, one can expect that these
independent players are aware of these relations: they have a network knowledge.
If one now merges these two implications, one must concede that a player who acts
as an intermediary knows that the firm who sells the goods to the consumers acts
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as a monopolist. This agent has therefore a strong incentive to capture a share of
profit of the final seller.

In this paper, we try to illustrate this idea by studying the price formation of
both intermediate and final goods. From that point of view, we take, contrary to
Hendricks, Piccione and Tan [9, 10], the network as given. This one is described
by a set of oriented edges which are identified to basic activities and which are
chained together to obtain products sold to customers. One could for instance think
at an airplane ticket from an origin to a destination which involves at least two
different companies. We even restrict ourselves to a peculiar class of networks.
As in usual transportation networks, we only consider ‘two-way’ networks1 (see
Economides–White [8] or Economides [7]). But as noted by Carter and Wright
[3], if one introduces local monopoly power in a network in which, by the (‘two-
way’ assumption, every final producer also sells intermediate goods, one deals with
a ‘symbiotic’ production system which encompasses a large set of commodities
or services including telecommunication, postal services or even the international
flower delivering service called Interflora.

Our main objective is to study the pricing behaviors on such networks in a gen-
eral setting. In a world in which each firm has constant average cost, we try to keep
the network and the demands for transportation activities as general as possible in
order to verify in a first step the existence of equilibrium prices. In a second step,
we even obtain, under some additional assumptions, a complete characterization of
these prices. This work can therefore by viewed as a preliminary but important step
of a work in which one manipulates the data of this world (i.e. the unit costs, the
network or the demands). Our main purpose is therefore to construct some ‘reduced
form’ of a pricing game on a network, that is a form which is often taken as given
like in the paper by Hendricks, Piccione and Tan [10]. We list, in Section 7 some
potential applications of our result and develop an example of reciprocal access
pricing in Internet. These applications largely rely on the manipulation of the basic
data of a pricing game in a cooperative or a non-cooperative way.

The behaviors at work in this model have in some sense a double-marginalization
flavor because each decision center has a network rationality and tries to capture a
part of the profit of the agent who sells the goods to the consumers. However, in
‘two-way’ networks, each final seller also sells intermediate goods. A sequential
approach, like the one used in the pancaking problem introduced by Laffont–Tirole
[13, p. 185] does not fit. This is why we solves the game by a standard Nash
equilibrium concept in which each player simultaneously chooses his margins

The model proposed in this paper works as follow. We consider a set of activ-
ities which are linked together in order to obtain travels from some origin to some
destination. Several travels may of course exist between a given origin-destination
couple. Each firm at the origin of a travel takes two decisions. It affects the demand
to the different travels and charges a price to the costumer by taking a margin over
its production cost. But this cost covers not only the cost of his own activity but

1 An application to ‘one-way’ network can be found in Soubeyran and Stahn [18].
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also the amount of money charged by the other decision centers which intervene in
the production of the same composite good. From that point of view, we consider a
game in which each final seller affects, in a first step, the customer to the different
roads and in which, in a second step, each firm plays a Nash equilibrium in margins.
The subgame perfect equilibria of this game are studied and general results are
given on existence and uniqueness. We even give a full characterization of the set
of solutions under quite reasonable assumptions. One of the most interesting result
(see Proposition 7) is that these firms, for a given service, compete for equal profit
shares independently of their unit cost level.

The paper will be organized as follows. The general setting is defined in sec-
tions 2 and 3. In fact Section 2 is devoted to the characterization of the physical
network and to the set of commodities while Section 3 presents the behavior of dif-
ferent agents and the underlying game. In section 4, we present an example which
illustrates the class of problem studied in this paper and presents our results. In
Section 5, we analyze the subgame in which the agents choose margins, existence
is proved under rather general assumptions and uniqueness is discussed. Section 6
is devoted to the optimal road choice and to the general solution of the game. In
Section 7, we apply this approach to peering behavior on Internet and we describe
some other applications. Finally, Section 8 is devoted to some concluding remarks.
Proofs are relegated to an appendix.

2. The Market Structure

If one considers network goods, any description of a market structure must in-
clude on the one hand a physical description of the production network and on the
other hand a definition of the set of services provided by this network. For that
purpose we first characterize a ‘two-way’ transportation network (see Economide–
White [8] or Economides [7]). This allows us, in a second step, to construct the
set of commodities which are traded inside this ‘symbiotic’ network (see Carter
and Wright [3] or Cricelli, Gastaldi and Levialdi [5]) and those whidh are sold to
external customers.

2.1. THE NETWORK

A description of a network usually starts with a set of vertices which are identified
to located decision centers and is followed by the definition of a set of edges which
are viewed as connections or interactions between these decision centers. In this
paper, we do not follow this standard approach. In fact, our approach of a network
basically relies on a set of activities which are realized by independent decision
centers and which are combined in order to create chains of activities. Each of these
chains concurs to the production of a good or a service. This is why we start the
definition of a network with a set A of activities a ∈ A which are identified to ori-
ented edges and are combined in order to obtain a travel or a path t = (at1, . . . , atn)
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which goes through different activities. We denote by T the set of all available
travels. The maps o : T → A and e : T → A associates to each travel t its first
activity o(t) and its last activity e(t). The map n : T → N returns the number n(t)
of activities in t and in order to make sure that the network structure makes sense
we assume that ∀t ∈ T , n(t) � 2. We also introduce c : T → R, the cost c(t) of
one unit of good or service produced in the oriented chain t ∈ T . We even assume
that the unit cost cta of each activity along a travel can be clearly identified and,
of course, that c(t) = ∑

a∈t c
t
a . If one associates a decision center to each basic

activity, it also becomes important to identify the set Ta = {t ∈ T |a ∈ t} of travels
which contain a ∈ A and to introduce two subsets T oa = {t ∈ T |a = o(t)}, and
T ia = Ta\T oa which respectively describe the set of paths in which activity a is the
first or an intermediate activity.2

This general setup of a production network fits with the description of a pro-
duction process of a lot of composite (or system) goods. (see Matutes–Regibeau
[15]). But if one is interested in transportation networks, one can introduce more
structure. We first assume that a travel cannot contain a cycle or, in other words
∀a, a′ ∈ t , a �= a′. As a consequence T oa and T ia form a partition of Ta. One
also notices that transportation networks are typically ‘two-way’ networks (see
Economides–White [8] or Economides [7]). This means that if travel t ∈ T then
the reverse travel t− is also available. These two travels are nevertheless considered
as two different products even if one assumes that c(t) = c(t−), i.e. the cost of a
travel is independent of the direction. Finally, we also assume that the cost of an
elementary activity is independent of the travel, i.e. that cta = ca for all t ∈ Ta . We
however restrict these costs in a way to make sure that a longer travel in the sense
that it requires more elementary activities is more costly, or in other words that if
n(t) > n(t ′) then c(t) > c(t ′).

2.2. COMMODITIES, PRICES AND DEMANDS

By taking this network as given, let us now move to the description of the available
transportation services. If one takes the point of view of a customer, one notices
that he is not really interested in a travel itself. What is important for him is the
existence of a connection between an origin and a destination. The service associ-
ated to a travel is therefore given by the map S : T → A × A which associates to
each t ∈ T the origin destination couple s(t) = (o(t), e(t)). Moreover the set of
available services is given by S(T ) an element of which is denoted by s. There also
exists a demand Ds for each service s ∈ S(T ). Moreover, as Hendrick, Piccione
and Tan [9], we assume that this demand is given by Ds(ps). In other words, we
suppose that the demand for each origin-destination pair is independent of the price
of the other destinations available at the same origin. The idea is that the customers

2 At that point, it seems strange to treat the last activity as an intermediate one. But this point will
become clear in the next subsection.
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located at an origin and who wish to travel at a destination have no desire to travel
anywhere else.

The reader however notices that several travels may induce the same service.
If #A denotes the number of elements in A, this happens when #S−1(s) = #{t ∈
T |(o(t), e(t)) = s} > 1.

In this case we assume that the firm which provides the activity at the origin
of the travel has the opportunity to choose the proportion (αts)t∈S−1(s) of customers
affected to each travel. At this point one may wonder why the customers only care
about the destination of the travel and not about the number of intermediate activit-
ies. This assumption is not crucial if one considers telecommunication networks but
becomes important if one deals, for instance, with air carriers. We however decide
to neglect this fact for basically two reasons. First, it happens that at equilibrium
only the shortest roads are selected. One can, of course, always argue that this is
not an argument. But remember that there is no congestion in our network. It this
case, if consumers care about the length of the travel they surely choose as the
firms the shortest one. From that point of view, time becomes important only if
there is congestion. In this case a firm may have an incentive to redirect customers
on longer travel at, of course, a cheaper price.

Finally, one also remarks that each service s ∈ S(T ) which requires a travel t
with the property that n(t) > 1 is obtained by a sequence of basic transportation
activities. The firm which sells the travel to the consumers must therefore purchase
some intermediate services by the other firms along the travel t . Let3 (pta)a∈t\o(t)
denotes the unit prices charged by the intermediaries on travel t . In this case, one
notices that the price charged by a intermediary for a same activity may change
with the travel one considers. This follows from the fact that we assume that
every agent has the knowledge of the whole network T and has the opportunity
to discriminate the agents located at origin of the different travels.

If one takes for granted these definitions of the final and of the intermediate
goods, one immediately notices that our network structure applies to railway, road
or air carriers. But, following Carter and Wright [3] or Cricelli, Gastaldi and Le-
vialdi [5], one even remarks that the production of travels can be identified to a
symbiotic production system because this one has the following characteristics:
• each producer has a monopoly power in its own market and knows the net-

work.
• each producer sells intermediate goods to an other transporter because we

consider a ‘two-way’ network. Moreover, a producer which has access to a
demand, produces both intermediate and final goods

• each producer must purchase the intermediate goods from an other producer
From that point of view, our approach also covers telephone services and other
forms of telecommunication services like telex, telegram and even internet.

3 By t\o we mean all the basic activities which compose travel t except the first one.
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3. The Behaviors and the Underlying Game

Because each activity is provided by an independent decision center, we identify
each component of A to a strategic agent. These firms have the ability to set the
prices of the final or the intermediate services. However the important assumption
we made is that these strategic agents have a network rationality. This means that
they know the description of the network and, as a consequence, know exactly to
which firm they sell an intermediate service and that this firm acts as a monopolist
on the final market. An intermediate producer has therefore a strong incentive to
charge a price which is higher than his marginal cost in order to capture a part
of the profit of the final supplier. But in our setting, marginal costs are constant
and equal to the average cost ca . Hence choosing a price which is higher than
this marginal cost is totally equivalent to choose the difference between this price
and a given average cost, i.e. to take a margin mt

a = pta − ca over his unit cost.
These margins, as the prices, are of course specific to each travel. Each agent has
therefore the opportunity to set the following margins (mt

a)t∈T ia where T ia is the
set of all travels in which agent a intervenes. Moreover because one works with a
symbiotic production system, one knows that ∀a ∈ A, T ia �= ∅, because each firm
always acts as an intermediary.

But some producers also have the opportunity to sell services to the consumers.
In fact, by applying the service function S to the set T , each agent a ∈ A can be
characterized by a set Sa = S(T oa ) (which may be empty) of services provided
to the customers. Let us now consider an agent for which Sa �= ∅ and let us
look at his behavior with respect to a service s ∈ Sa. This one has to take two
decisions. He first has to affect the demand to the different travels S−1(s) which
goes from the same origin to the same destination. In other words, he sets the
proportions (αts)t∈S−1(s) of the demand affected to each travel. But, as a mono-
polist, he also takes a margin over his unit production cost of service s. These
margins are denoted by (mt

a)t∈T oa . However to choose these quantities, this agent
must be able to compute the unit cost cs of service s. With his knowledge of
the network, he is conscious that on each travel t ∈ S−1(s) each intermediary
charges a margin. The unit cost of travel t ∈ S−1(s) is therefore given by c(t) +∑

a∈t\o(t) mt
a . The unit production cost of service s is obtained by using the pro-

portions (αts)t∈S−1(s) of customers affected to each travel. This one is given by
cs = ∑

t∈S−1(s) α
t
s(c(t) +

∑
a∈t\o(t) m

t
a) and can be decomposed into two terms:

rs = ∑
t∈S−1(s) α

t
s · c(t) which represents the real production cost of a unit of

this network good and Mt = ∑
t∈S−1(s) α

t
s(
∑

a∈t\o m
t
a) which illustrates the profit

capture. Having in mind that this firm also takes a margin, the price ps of service s
is given by:

ps =
∑

t∈S−1(s)

αts

(
c(t)+

∑
a∈t

mt
a

)
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Moreover this decomposition of the price is assumed, under the network know-
ledge assumption, to be a common information to each player.

Let us now move to the computation of the profit function of agent a ∈ A.
This one intervenes in the production process of each service s ∈ S(Ta). For each
s ∈ S(Ta), he behaves either as a final seller or as an intermediary. In the first case
the profit realized on service s is given by:

πsa = (ps − cs) ·Ds(ps) =

ps − ∑

t∈S−1(s)

αts


c(t)+∑

a∈t\o
mt
a




Ds(ps)

=
∑

t∈S−1(s)

αts ·mt
a ·Ds


 ∑
t∈S−1(s)

αts

(
c(t)+

∑
a∈t

mt
a

)
In the second case, one first needs to identify the subset of travels on which a

intervenes for a given service. This set is given by S−1(s) ∩ Ta , the intersection of
the set of activities which are required by service s and the set of travel in which a
intervenes. Moreover for each of these travels he transports a proportion αts of the
demand and takes a margin over his unit cost. In this case, his profit is:

πsa =
∑

t∈S−1(s)∩Ta
(pta − cta) · αts ·Ds(ps)

=
∑

t∈S−1(s)∩Ta
αts ·mt

a ·Ds


 ∑
t∈S−1(s)

αts

(
c(t)+

∑
a∈t

mt
a

)
It is also a matter of fact to verify that if agent a sells service s then S−1(s)∩ Ta =
S−1(s), the profit of an intermediary or a final seller can therefore be describe by
the same notation. If one now sums over all services in which a intervenes, his
profit function is given by:

πa(Ma,M−a, δa) =
∑

s∈S(Ta)

∑
t∈S−1(s)∈Ta

αta ·Ds


 ∑
t∈S−1(s)

αts

(
c(t)+

∑
a∈t

mt
a

)
with

Ma = ((mt
a)t∈Ta),M−a =

((
(mt

a′) a′∈t
a′ �=a

)
t∈S−1(s)

)
s∈S(Ta)

and

δa = ((αts)t∈S−1(s)∩Ta)s∈S(Ta)

In order to close the informal presentation of this game, it remains to discuss
its timing. Concerning this point, we assume that the choice of the roads (i.e. the
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proportion of consumers affected to each travel) is taken before the choices of the
different margins. However, in order to affect the consumers to the travels from an
origin to a destination, we assume that the firms which deal with this choice are
able to anticipate the different margins. This is why we use a notion of subgame
perfect equilibrium4 and begin to solve the game backwards. In other words, we
allowed the final supplier to manipulate in a first step the production cost rs =∑

t∈S−1(s) α
t
sc(t) of each service.5

If one wants to be more formal and defines the sub-game perfect equilibrium of
this game, several notation are required. Let:
• #A denotes the number of elements of A, and �k+ be the set �k+ = {x ∈

R
k+|
∑k

i=1 xi = 1},
• �a =∏s∈S(Ta) �

#(S−1(s)∩Ta) a generic element of which is
δa = ((αts)t∈S−1(s)∩Ta)s∈S(Ta), � =

∏
a∈A �a , and �−a =∏h∈A,h�=a �h

• Ma = R
#Ta+ a generic element of which is Ma = ((mt

a)t∈Tα) and let M−a =∏
h∈A,h�=a Mh.

Because the agents observe the δ = (δa)a∈A ∈ � before choosing their margins
the strategy set of agent a is given by:

Sa =
{
(δa,Ma(·)) ∈ �a ×M�

a

}
and the payoff function of agent a ∈ A is defined by

πa :Ma ×M−a ×�a → R

(Ma,M−a, δa) �→ πa(Ma,M−a, δa)

as given before. It follows that:

DEFINITION 1. A subgame perfect equilibrium (SPE) associated to the game
� = 〈Sa, πa〉a∈A is given by (δ∗a,M∗a (·))a∈A ∈

∏
a∈A Sa with the property that

(i) ∀δa ∈ �a, πa(Ma(δ
∗
a, δ
∗−a),M−a(δ∗a, δ∗−a), δ∗a) � πa(Ma(δa, δ

∗−a),M−a(δa ,
δ∗−a), δa)

(ii) ∀δ ∈ �,∀Ma(δ) ∈Ma, πa(M
∗
a (δ),M

∗−a(δ), δ) � πa(Ma(δ),M
∗−a(δ), δ).

4. A Simple Example

In order to describe the main purpose of this paper, let us start with a simple
example of a transportation network in which 6 independent companies are in-
volved. They are denoted by a ∈ A = {1, . . . , 6} and realize a basic transportation
activity at unit cost ca . These companies are viewed (see Figure 1) as edges of
a transportation graph G which is defined by a set T of travels which combines

4 In fact, we do not really deal with a subgame perfect equilibrium because, as we will see later,
the first stage of the game reduces to independent optimization problems.

5 For another class of first step cost manipulation games see Long and Soubeyran [14].
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these companies. The set S of transportation services offered to the customers is
given by the couples origin-destination associated to each travel. A demandDs(ps)

is associated to each service. Under network rationality, price discrimination is
allowed. Thus, each firm which is not at the origin of a travel has the opportunity
to set prices for intermediate services associated to a given travel. A firm at the
origin chooses the final price and routes the traffic. Moreover under constant unit
costs, it is straightforward to verify that profit maximization is equivalent to set
margins. One also notices that each final price of a service can be written in terms
of the margins of the firms which contribute to this service. For instance, in our
example (see Figure 1) the price p(12) can be written as:

p(12) =α(152) · (m(152)
1 +m(152)

5 +m(152)
3 + c1 + c2 + c3)

+ α(1462) · (m(1462)
1 +m(1462)

4 +m(1462)
6 +m(1462)

2 + c1 + c4 + c6 + c2)

where α(152) and α(1462) denote the proportion of the demand D(12)(p(12)) effected
to travel (152) and to travel (1462). The profit of agent a is therefore a function
of the different margins and proportions. For instance (see Figure 1), the profit of
agents 4 is given by:

π4(m4,m−4, α) =α(143) ·m(143)
4 ·D(13)(p(13) + α(341) ·m(341)

4 ·D(31)(p(31))

+ α(1462) ·m(1462)
4 ·D(12)(p(12))

+ α(2641) ·m(2641)
4 ·D(21)(p(21))

+ α(2543) ·m(2543)
4 ·D(23)(p(23)

+ α(3452) ·m(3452)
4 ·D(32)(p(32))

wherem−4 = (m1,m2,m3,m5,m6) and α = (α1, a2, α2). The whole pricing game
can therefore be summarized in the following figure.

Figure 1. A simple network.

Where
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T = {(152), (251), (148), (341), (263), (362), (3651)(1462), (2641), (2543), (3452), (1563)}
S = {(12), (21), (13), (31), (23), (32)}

M1 = {M1 = (m(152)
1 , (m

(251)
1 , (m

(143)
1 , (m

(341)
1 , (m

(3651)
1 , (m

(1462)
1 , (m

(2641)
1 , (m

(1563)
1 ) ∈ R

8+}
M2 = {M2 = (m(152)

2 , (m
(251)
2 , (m

(263)
2 , (m

(362)
2 , (m

(2641)
2 , (m

(1462)
2 , (m

(2543)
2 , (m

(3452)
2 ) ∈ R

8+}
M3 = {M3 = (m(143)

3 , (m
(341)
3 , (m

(263)
3 , (m

(362)
3 , (m

(3651)
3 , (m

(2543)
3 , (m

(3452)
3 , (m

(1563)
3 ) ∈ R

8+}
M4 = {M4 = (m(143)

4 , (m
(341)
4 , (m

(1462)
4 , (m

(2641)
4 , (m

(2543)
4 , (m

(3452)
4 ) ∈ R

6+}
M5 = {M5 = (m(152)

5 , (m
(251)
5 , (m

(3651)
5 , (m

(2543)
5 , (m

(3452)
5 , (m

(1563)
5 ) ∈ R

6+}
M6 = {M6 = (m(263)

6 , (m
(362)
6 , (m

(3651)
6 , (m

(1462)
6 , (m

(2641)
6 , (m

(1563)
6 ) ∈ R

6+}
�1 = {δ1 = (α(152), α(1462), α(143), α(1563)) ∈ �2+ ×�2+}
�2 = {δ2 = (α(251), α(2641), α(263), α(2543)) ∈ �2+ ×�2+}
�3 = {δ3 = (α(341), α(3651), α(362), α(3452)) ∈ �2+ ×�2+}
�2+ = {x ∈ R

2+|x1 + x2 = 1}
Our paper proposes a general analysis of games of that type in which the propor-

tions δ = (δ1, δ2, δ3) are set before the margins M = (M1,M2,M3,M4,M5,M6).
These margins must therefore be viewed as functions of the road choices. But in
order to spare notations, we do not explicitely introduce this relation in the rest of
the paper. The existence of a solution to this game only requires the existence of
C1 strictly decreasing demand functions with the property that these demands are
zero after some price. The proof goes as follow. One first notices that the problem
can be decomposed service by service; the game reduced to a service is called a
generic game. Secondly, we remark that the equilibrium of a generic game can be
obtained as a fixed point of a function which solves a parametrized optimization
problem. We conclude in a third step to existence by using Milgrom–Shannon’s
[16] comparative static results and by applying Tarski’s [20] fixed point theorem.
Moreover if the demands are assumed to be C2 and strictly log-concave, we provide
a complete characterization of the solutions of games of that type. For instance,
if in our example the demands are all given by D(ps) = 1 − ps and the costs
by c = (.1, .2, .3, .2, .2, .1) then an equilibrium, by applying Proposition 9, is
immediately given by:



M1 = M2 = (.125, .125, .1, .1, 0, 0, 0, 0) M3 = (.1, .1, .1, .1, 0, 0, 0, 0)

M4 = M6 = (.1, .1, 0, 0, 0, 0) M5 = (.125, .125, 0, 0, 0, 0)

δ1 = δ2 = δ2 = (1, 0, 1, 0)

p(1,2) = p(2,1) = .875 p(1,3) = p3,1) = p(3,2) = p(2,3) = .9
π1 = π2 � .05 π3 = .04 π4 = π6 = .02 π5 � .03

Proposition 9 can therefore be viewed as the reduced form of this game. This
opens a wide class of economic applications in which the data of this model (i.e.
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the graph, the demands or the costs) can be manipulated by means of a cooperative
or a non-cooperative game. Some applications are stressed in Section 8. The reader
also notices that, for a given service, the firms compete for equal profit shares
independently of their unit cost level. For instance for service (12) each firm obtains
the same profit given by (.125)2 but none of the them has the same unit cost. Let us
now move to the general description of games of that type.

5. A Generalized Double Marginalization Game

At this stage of the study, we focus on point (ii) of the definition of an equilibrium.
If fact, it is well knows that for sub-game perfect equilibria every deviation from the
equilibrium path must be followed by Nash equilibrium strategies of the sub-game
which is in continuation. But our game only consists in two steps. We therefore
simply has to study the Nash equilibrium of a game in which the firms choose their
margins whatever the road choices are. In the first subsection, we briefly recall the
definition of this Nash equilibrium and verify that this game can be decomposed
into a family of generic games. As a consequence, one simply needs to study one
of these generic games in order to know the properties of the whole game. This is
done in a second subsection.

5.1. THE EQUILIBRIUM: DEFINITION AND DECOMPOSITION

The choice of margins is motivated by two facts. On the one hand each firm as a
monopolist has an incentive to exploit his market power. On the other hand, the
knowledge of the network encourages each agent to capture a part of the profit of
the other firms. This is why strategic interactions appear. From that point of view,
an equilibrium coincides to a situation in which no agent has an incentive to change
his margins, given the strategies of the other firms. In other words:

DEFINITION 2. An equilibrium is a vector of margins (M∗a )a∈A with the property
that:

∀a ∈ A,∀Ma � 0, πa(M
∗
a ,M

∗
−a, δa) � πa(Ma,M

∗
−a, δa)

where the road choices (δa)a∈A are taken as given.

If one comes back to the definition of the profit function, one notices that the
optimization problem of a firm is separable with respect to the different services
to which an agent contributes. One therefore expects that the capture game also
satisfies this property. In other words, one hopes that this game can be decomposed
with respect to each service s ∈ S(T ).

In order to make this point more precise, let us concentrate on one particular ser-
vice s. It is a matter of fact to identify the agents who contribute to its production.
They belong, by construction, to the set Is = {a ∈ A|t ∈ Ta for some t ∈ S−1(s)}.
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Moreover if one denotes by σi,s = ∑
t∈S−1(s)∩Ti α

t
s · mt

i the global profit share6

which is taken by each of these agents i ∈ IS and by rs = ∑
t∈S−1(s) α

t
s · c(t) the

cost of service s ∈ S, one easily verifies that the equilibrium margins given by
Definition 2, and which are associated to a specific service are also equilibrium
margins of a game restricted to this given service. More formally, the following
proposition is satisfied.

PROPOSITION 1. Let (M∗a )a∈A be an equilibrium of the whole game and let us
restrict to the equilibrium margins (((m∗ta )a∈t )t∈S−1(s)) associated to service s ∈
S(T ). If one defines Is by Is = {a ∈ A|t ∈ Ta for some t ∈ S−1(s)} by rs =∑

t∈S−1(s) α
t
s · c(t) and σi,s by σi,s =∑t∈S−1(s)∩Ti α

t
s ·mt

i for all i ∈ Is , then one can
assert that:

∀s ∈ S(T ),∀i ∈ Is, σ ∗i,s ∈ arg max
σi,s∈R+

σi,sDs


σi,s + ∑

j∈Is\{i}
σ ∗j,s + rs




One can even go a step further. In fact, one also notices that the margins which
contribute to the definition of the price ps of a service s ∈ S(T ) never contribute
to the definition of an other price because we have assumed that each firm is able
to discriminate the final suppliers. From that point of view, it seems possible to
study an equilibrium of a total game only by looking for an equilibrium service
by service, or, in other word, by solving enough generic games defined in the
following way:

DEFINITION 3. Let D : R+ → R+ a C1 function with the property that (i)
∀p � p̄, D(p) = 0, (ii) ∀p < p̄, D(p) > 0, (iii) ∀p ∈]0, p̄[,D′(p) < 0, and r be
a strictly positive scalare such that r < p̄. An equilibrium of a generic game is a
vector (σ ∗i ) ∈ R

#I+ with the property that:

∀i ∈ I, σ ∗i ∈ arg max
σi∈R+

σiD


σi + ∑

j∈I\{i}
σ ∗j + r




It therefore remains to verify that the study of appropriate generic games induces
an equilibrium of the whole game. This point is proved in the next proposition.

PROPOSITION 2. Let As = {a ∈ A|t ∈ Ta for some t ∈ S−1(s)}, rs =∑
t∈S−1(s) α

t
s · c(t) and D(·) = Ds(·) for each s ∈ S(T ). If one denotes by (σ̃ sa )a∈As

a solution of the sth generic game then the margins ((m̃t
a)a∈t )t∈T given by:

∀s ∈ S(T ),∀a ∈ As,
∑

t∈Ta∩S−1(s)

αts · m̃t
a = σ sa

describe an equilibrium of the complete game.

6 It is a matter of fact to verify that σi,s can be an indicator of the share of profit that takes agent

i on service s because the real profit share is given by
(
∑
t∈S−1(s)∩Ta α

t
s ·mta)Ds(ps)

(ps−rs)Ds(ps) = σi,s∑
i∈IS σi,s

.
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These two propositions are very interesting. They tell us that if one wants to
know some properties of total double marginalization game, one simply needs
to study the generic game given in Definition 3. So let us concentrate on this
equilibrium.

5.2. SOME PROPERTIES OF THE GENERIC GAME

If one looks at this class of games, one notices that some trivial equilibria always
exist. For instance, any vector of strategies in the set {(σi)i∈I ∈ R

I+|∀i ∈ I , %−i =∑
j∈I\{i} σj � p̄ − r} is a Nash equilibrium. In this case, any individual deviation

does not affect the profits because the demand remains at 0.

REMARK 1. From a pure logical point of view, one can even assert that a SPE
associated to the game � = 〈Sa, πa〉a∈A exists if ∀s ∈ S(T ), ∃p̄s > 0 with the
property that ∀ps � 0, D(ps) = 0.

The idea is the following. By Proposition 2, let us look at a given service s,
and let us compute min(αts)t∈S−1(s)

rs = mint∈S−1(s){c(t)}. Because the (σ sa )a∈AS has
no upper bound, one can choose σ̃ sa , such that ∀a ∈ As , ∑j∈As\{a} σ̂

s
a � p̄s −

mint∈S−1(s){c(t)}. By construction (σ̃ sa )a∈As is a trivial Nash equilibrium for service
s. But we can even claim that this vector is a trivial equilibrium whatever the road
choices are because we have chosen rs as small as possible. It remains to apply this
argument to each service and, in the spirit of Proposition 3, to set ∀a ∈ As , ∀s ∈
S(T ), ∀t ∈ Ta∩S−1(s), m̃t

a = σ sa . The margins reconstructed in this way ensure the
existence of trivial Nash equilibrium for each service whatever the road choices are.
Hence any road choice δ∗ ∈ � associated to, (M∗a (δ))a∈A = ((m̂t

a)t∈Ta)a∈A ∀δ ∈ �
is a SPE.

These trivial equilibria are however not very interesting from an economic point
of view. So let us restrict to non-trivial equilibria that is to equilibria with the
property that %∗ ≡ ∑i∈I σ

∗
i � p̄ − r ≡ %̄ and let us establish their existence. In

order to obtain this result, one first notes that a change in the strategy of any player
affects the demand in the same way. As a consequence, one can hope that symmetry
follows. If one uses standard technics which were developed for Cournot models
(see for instance Amir [1]), one can even expect that any symmetric equilibrium
can be obtained by a computation of a very simple fixed point in R the function of
which is, up to slight changes, a parametrized solution of an optimization problem.
More precisely, one can show that:

PROPOSITION 3. Let π : [0, %̄] × [0, %̄] → R be given by π(%,%−i) = (% −
%−i ) ·D(% + r).
Let C : [0, %̄] → 2[0,%̄] be defined by C(%−i ) = [%−i , %̄]
Let φ(%−i ) = {% ∈ R+|% ∈ arg max%∈C(%−i)π(%,%−i)}
Let ϕ : [0, %̄] → 2[0,%̄] such that ϕ(%−i ) = n−1

n
φ(%−i ) with n = #I
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One verifies that %∗−i is the fixed-point of ϕ if and only if σ ∗i = 1
n−1%

∗
−i is a

symmetric Nash equilibrium of the generic game.

It remains to verify that all non trivial equilibria of the generic game are sym-
metric. If this is the case this surely simplifies the existence proof. This result also
has a strong economic content. It implies, if one remembers that the σi are profit
share indicators, that the firms obtain the same profit share independently of their
costs or in other words that they take the same margins and obtain the same profits.
So let us establish that:

PROPOSITION 4. Under the assumption that ∀p ∈]0, p̄[D′(p) is well-defined,
D′(p) < 0, and ∀p � p̄ D(p) = 0, every non trivial equilibrium of a generic
game is symmetric.

Because each non trivial equilibrium of the generic game is obtained by the com-
putation of a fixed-point the function of which is a solution of a parametrized op-
timization problem. It therefore remains to characterize the set-valued map φ(%−i ).
By applying Milgrom–Shannon’s comparative static [16] approach, one establishes
that:

PROPOSITION 5. Under the preceding assumptions, every selection f (%−i ) from
the set-valued map φ(%−i ) = arg max%∈C(%−i )π(%,%−i) is well-defined and non
decreasing.

In order to show existence, it remains to verify that ϕ(%−i ) = n−1
n
φ(%i) has a

fixed-point. But any selection g : [0, %̄] → [0, %̄] of ϕ(%−i) is, by the preceding
proposition, well-defined and non decreasing. It follows from Tarsky’s fixed-point
theorem [20] that:

PROPOSITION 6. If
(i) ∃p̄ > r,∀p � p̄,D(p) = 0
(ii) ∀p ∈]0, p̄[, D′(p) is well-defined and D′(p) < 0

the generic game induced by this demand function has at least one non-trivial
symmetric equilibrium. Moreover every non-trivial equilibrium is symmetric.

As a corollary, one immediately notices that this proposition insures the exist-
ence of a non-trivial equilibrium in the more general game defined on our network.

REMARK 2. If each demand Ds(p) satisfies the preceding assumption, then the
game � = 〈Sa, πa〉a∈A admits a SPE with the property that there is no trivial
equilibrium in the second step of the game.

To verify this point, fix any vector of road choice δ∗ ∈ �, define the required
number of generic game (Proposition 1), by Proposition 6, choose for each of them
a non-trivial equilibrium, and select equilibrium margins (M∗a )a∈A by applying
Proposition 2. Now let us construct, for each a ∈ A, the strategies (δ∗a ,M∗a (·))
where M∗a (·) is given by M∗a (δ∗a) = M∗a and ∀δ �= δ∗a , M∗a (δ) = (m̂t

a)t∈Ta given
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in Remark 1. These strategies define a SPE. It is of course a Nash equilibrium:
nobody has an incentive to deviate at step 2 because a Nash equilibrium is played
and if one agent deviates at step 1, he is punish because the other react by playing
a strategy which neutralizes his profit. But this strategy is even a Nash equilibrium
of the subgame which starts after the deviation (see Remark 1). Hence we have an
SPE.

This kind of equilibria are again not really satisfying from an economic point
of view. They of course implement a non trivial equilibrium in the second step
of the game, but the threat is so hard that the equilibrium path leaves the road
choices completely indeterminate Moreover, we are even not able to compute in a
simple way the second period Nash Equilibrium. This is why we decided to look
for stronger restriction on the model in order to make sure that (i) M∗a is unique (at
least for travels which are activated) and easily computable (ii) the threat can be
based on a non-trivial equilibrium. Let us first concentrate on the uniqueness issue.

Roughly speaking, this property is obtained if the solution φ(%−i ) of the op-
timization problem is a continuous function the slope of which is smaller than In
order to obtain this result, we assume that the demand is strictly log-concave. This
assumption can seem very arbitrary. But if one introduces discrete choices of het-
erogeneous consumers, this assumption can be simply based on a log-concave dis-
tribution of the characteristics of the consumers (see Caplin–Nalebuff [2]). Under
this restriction, one can prove the following proposition.

PROPOSITION 7. If one also assumes that D(p) is strictly log-concave, C2 on
]0, p̄[ and that limp→p̄′ D′(p) < 0, then the non-trivial equilibrium of generic
game is unique. Moreover if one denotes by πi(n, r) the equilibrium profit of agent
i, one observes that ∀i ∈ I , π(n, r) = π(n, r), that ∂nπ(n, r) < 0 and that
∂rπ(n, r) < 0.

The reader surely notices that:

REMARK 3. For a generic service, each firm essentially compete for equal price
share and profit independently of its unit cost. Moreover the profit are the same for
each firm which contributes actively to a given service. One observes some profit
equilisation rule.

This result is strongly related to the fact that the different activities are com-
plementary. This basic property is fundamental in several applications because it
crucially structures the nature of the equilibrium profits.

6. Toward a Characterization of the Complete Solution

The aim of this section is to obtain a complete characterization of the solution of
the transportation game. But this requires that we solve in a first step the optimal
road choice problem which is simply an optimization problem.
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6.1. THE OPTIMAL ROAD CHOICE

In order to perform this task, one needs (i) to define the subset Ar ⊂ A of agents
who have this choice opportunity and (ii) to construct their profit functions. The
first question is quite easy to solve. One considers the set Ar = {a ∈ A|T oa �= ∅} of
agents which are at least at the origin of one travel. One however needs to be more
careful concerning the computation of their profit function.

So let us start with an agent a ∈ Ar and a service s ∈ S(T oa ). By Proposi-
tion 2, one knows that the equilibrium margins are obtained by solving a generic
game the parameters of which are the number #Is of agents concerned by the
production of service s and the unit network production cost given by the scal-
are rs = ∑

t∈S−1(s) α
t
s · c(t). By Proposition 7, one also knows that each agent

a ∈ Is obtains the same profit level πs(#Is, rs). It remains to sum over all services
s ∈ S(T oa )) which are sold by agent a ∈ Ar in order to obtain his profit function. By
affecting the customers to the different travels each agent a ∈ Ar therefore solves

max
((αts)t∈S−1(s))s∈S(T oa )

∑
s∈S(T oa )

πs(#As, rs) s.t. ∀s ∈ S(T oa )
∑

t∈S−1(s)

αts = 1

In this case, an agent has the opportunity, for each service, to manipulate both #As
and rs , i.e. the number of activities which concurs to the production of service and
the network production cost. As a consequence no game is involved and the road
choice simply results from an optimization problem service by service. Moreover
if one also assumes that the different demand functions are log-concave, one knows
that the profit functions are decreasing with the number of agents who participate
to the production of the service. Each seller a ∈ Ar has therefore a strong incentive
to only activate one travel: the shortest one because in this case a minimum of
intermediaries are needed. Moreover if several shortest travels exist, he chooses
the cheapest one. More formally, one can show that:

PROPOSITION 8. If t∗s ∈ arg mint∈T ns {c(t)} and T ns = {t ∈ T |t ∈ arg mint∈S−1(s)

{n(t)}} then an optimal road choice for service s ∈ S(T ) is α
t∗s
s = 1 and αts = 0 for

all t ∈ S−1(s) and t �= t∗s .

6.2. A DESCRIPTION OF THE SOLUTIONS OF THE TRANSPORTATION PROBLEM

If one now puts together the results obtained in Proposition 7 and Proposition 8,
one can give a complete characterization of an equilibrium of our game.

PROPOSITION 9. If for s ∈ S(T ), Ds(ps) satisfies
(i) ∃p̄s > 0, ∀ps � p̄s ,Ds(ps) = 0
(ii) ∀ps ∈]0, p̄s [, Ds(ps) is at least C2, D′s(ps) < 0 and limp→p̄s D′s(ps) < 0
(iii) ∀ps ∈]0, p̄s[, Ds(ps) is strictly log-concave
(iv) p̄s > maxt∈S−1(s){c(t)}



PRICING BEHAVIORS ON NETWORKS 363

and if t∗s ∈ arg mint∈T ns {c(t)} and T ns = {t ∈ T |t ∈ arg mint∈S−1(s){n(t)}} then an
equilibrium in which every service s is available has the following properties for
all s ∈ S(T ):

(i) ∀s ∈ S(T ), αt∗ss = 1 and αts = 0 for all t ∈ S−1(s) and t �= t∗s .

(ii) ∀s ∈ S(T ), mt∗s
s = ms and mt

s = 0 for all t ∈ S−1(s) and t �= t∗s .
(iii) ∀s ∈ S(T ), ms solves

ms = −Ds(n(t
∗
s ) ·ms + c(t∗s ))

D′s(n(t∗s ) ·ms + c(t∗s ))
(iv) the price levels are ∀s ∈ S(T ), ps = n(t∗s ) ·ms + c(t∗s )
(v) the equilibrium profits are ∀a ∈ A

πa =
∑

s∈S(Ta)
IT ∗s

(Ds(ps))
2

−D′s(ps)
with It∗s =

{
1 if t∗s ∈ S−1(s)

0 else

In other words, if one assumes that the demand functions (i) admit reservation
prices, (ii) are strictly decreasing for strictly positive demands, (iii) are log-concave
and that (iv) each reservation price p̄s does not per se exclude travel t which real-
izes service s, our problem has a well-defined solution. In this case, each seller
chooses the shortest and cheapest travel. The margins along a selected travel are
the same across the firms and can be computed by means of a simple equation.

7. Some Uses of This Result

In this section, we quickly present an example of an application of our result which
deals with ‘peering’ behaviors in Internet. We discuss, in a second step, some
other extensions of this model. All of them rely on a manipulation of the basic
data which defined the transportation game and lead to some interesting economic
applications.

7.1. A SIMPLE ILLUSTRATION

If one considers Internet, one often distinguishes the Internet Service providers
(IFS) and the Internet Backbone Providers (IPB) (see for instance Crémer–Rey–
Tirole [4] or Dang Nguyen–Pénard [6]). The last ones transmit data over large
regions of the world using long-haul fiber-optic cables and they often exchange
data to each others under ‘peering agreements’. In other words they accept to route
all traffic which comes from an other IBP and which is delivered to one of their
customers without any charge. Our model provides a very simple explanation of
this fact as long as one introduces an explicit negotiation step.

To keep the example as simple as possible, let us only introduce two intercon-
nected IBPs which are identified in our terminology to basic activities. They are
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denoted by A = {a, b} and their unit costs are given by ca and cb. Concerning
the travels, one notices that a message can either stay in the same backbone or
goes to a customer of the other one. The set T of travels is therefore given by
T = {(a), (b), (a, b), (b, c)}. Concerning the services sold to the consumers, we
however need to slightly adjust the reference model. In fact, on Internet the custom-
ers do not buy a travel, they look for an access. So let us denote by Di(pi)i = a, b
the demand to each provider and let us assume that a proportion αi of the access
demand Di(pi) goes to customers of network j �= i. Because each IBP acts as a
monopolist, he takes a margin mi over his costs. These unit costs cover his own
production costs ci and the unit price charged by the other IBF in order to allow a
proportion αi of the demand to access network j . If one denotes by mi

j the margin
charged by j over a travel which comes from i, the price pi can be decomposed in
the following way:

pi = mi + (1− αi) · ci + αi · (ci +mi
j + cj ) = mi + αi ·mi

j + (ci + αi · cj )︸ ︷︷ ︸
ri

and the profit functions are given by

πi(mi,m
j

i ,mj ,m
i
j ) = mi ·Di(pi)+ αj ·mj

i ·Dj(pj )

From that point of view, one deals with a standard transportation game in which
agent i chooses mi and mj

i . The solutions of this game are well-known under some
restrictions on Di(pi). Moreover, it is immediate by Propositions 7 and 9, that no
peering behaviors appear because mi solves for i = a, b

mi = −Di(2mi + ri)
D′i(2mi + ri) and m

j

i =
mj

αj

This is not really surprising because peering behaviors rely on an agreement. This
is why a notion of co-opetition is required (see Nalebuff–Brandenburger [17]). In
other words, one has to consider a game in which the two IBPs negotiate in a first
step their reciprocal access charges (i.e. the mi

j ) by maximizing their joint profit
and, in a second step, choose independently their own margins. If one solves this
problem backwards, one first has to consider a transportation game in which the
mi
j are taken as given, one then computes the optimal profit level π̂i(mb

a,m
a
b) as

functions of mb
a and ma

b, and one finally chooses the reciprocal access charges by
maximizing π̂a(mb

a,m
a
b)+ π̂b(ma

b,m
b
a) over mb

a and ma
b .

If one considers, in this example, linear demand functions Di(pi) = di − ci ·
pi , it is a matter of fact to verify that the margins mi i = a, b which solve the
transportation game are given by mi = 1

2ci
(di − ci(αi ·mi

j + ri) and that the profit
functions are given by:

π̂i(m
b
a,m

a
b) =

1

4ci
(di − ci(αi ·mi

j + ri)2 + αj ·mj

i ·
1

2
(dj − cj ((αj ·mj

i + rj ))
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If fi(mi
j ) ≡ 1

2 (bi − ai(αi ·mi
j + ri) then

g(mb
a,m

a
b) =

∑
i=a,b

π̂i(m
b
a,m

a
b) =

∑
i=a,b

(
1

ci
(fi(m

i
j ))

2 + αi ·mi
j · fi(mi

j )

)

Moreover, by computation

∂g(mb
a,m

a
b) =

(
−ca · α

2
a ·ma

b

2
,−cb · α

2
b ·mb

a

2

)
It follows thatma

b = mb
a = 0. In other words one can assert that peering agreements

occur in this example.

7.2. SOME OTHER EXTENSIONS

The preceding example opens the way to a large class of applications. In fact, if
one comes back to this example, one notices that this one is simply obtained by
the manipulation of some data of a transportation game. By taking as given the
margins charged by each IBP to the other, one simply considers, from a formal
point of view, a new game in which these margins are introduced in the network
costs ri . The cooperative game which is played in the first step therefore simply
manipulates the natural parameters of this game.

If one now remembers that the basic parameters are (i) the network costs, (ii)
the demands and (iii) the number of agents providing one service, one can think
to a large class of other applications which affect these parameters. Moreover, our
notion also fits with an one-way network. Thus if one merges these two criteria one
obtains a large set of applications which can be summarized in the following table:

Cost Demand Number of agents

Two ways transportation, congestion network competition connectivity, hubs

One way resource based firms quality, localisation vertical integration

For instance, if one considers a two-way network, one can manipulate the unit
cost by introducing congestion and therefore enhance our optimal road choice
(which is already a cost manipulation problem). The reciprocal access problem
can also be revisited under the assumption that there exists network externalities. If
this happens the demand for a service is not only related to its price but also to the
number of users of a given service. For instance if one chooses a telecommunica-
tion company one is also interested in the numbers of friends one is able to join.
From that point of view, networks are in competition and these behaviors surely
affects the reciprocal access charges. The number of actors in a two-way network
is also important. Is there an incentive to open new roads in order to attract more
consumers having in mind that new intermediaries try to capture a part of the profit?
By answering this question, one directly addresses the problem of the construction
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of the network, a problem that we escaped in this paper by taking the network as
given.

One can even go a step further by noting that our approach also applies to one-
way networks. From that point of view, every production process can be viewed
as a network because it consists of a set of basic activities which concur to the
production of a commodity (Soubayran–Stahn [19]). The production cost of these
network firms can be affected by some coordination costs which can be lowered if
some efforts are spend. But if these resources are available in limited amount, one
deals with a resource based approach of the firm. The demand can also be affected
by the quality of the network good or by the place where this good is available.
Localization problems in the standard sense as well as in the space of characterist-
ics can therefore be addressed. Finally, if one changes the number of independent
decision centers within a production network one addresses the problem of vertical
integration (Soubayran–Stahn [18]).

8. Concluding Remarks

In this paper, we studied monopolistic pricing behaviors within a two-way network.
Each basic activity which concurs to the production of a network good was iden-
tified to an independent decision center which had some market power. Moreover
under the assumption that every player knows the network, we have introduced a
generalized double marginalization game. This concept depicts a situation in which
each actor of the network, due to this peculiar rationality, tries to capture a share
of the profit of the firms who sell the system goods to the consumers. Moreover,
because we deals with a symbiotic network, i.e. a network in which each final seller
also acts as an intermediary, we construct a game in which the margins are chosen
simultaneously.

The solution of this game was largely studied in this paper. We showed the
existence of such equilibria under rather general conditions on the demand func-
tions. In fact to obtain existence, we only required that the demands are strictly
decreasing up to a maximal reservation price. We also introduced a condition which
ensures in some sense the uniqueness of the equilibrium. This one relies on the log-
concavity of the demand functions and can by based on specific distribution of the
reservation prices in a discrete choice model. Under these restrictions, we were
able to construct a complete characterization of these equilibria including optimal
road choices.

This notion of equilibrium which relies on the fact that the players have a
network rationality also opens a wide scope of applications. Some of them were
discussed in this paper. They often induce the introduction of a game which precede
the capture game and which consists in a manipulation of it basic data that is the
network costs, the demand and the number of players. This game can be either
cooperative or non-cooperative. In the first case one deals with co-opetition, in the
second one with sub-game perfect equilibria. The study of these extensions leads
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to what we call a more general capture theory which is based on a manipulation of
the data.

The model developed in this paper however suffers from several limitations.
The reader surely notices that the assumption, commonly used in this literature,
which stays that the demand of a network service only depends of his own price
largely simplifies the treatment of the model.

It would be interesting to extend this construction in this direction. Moreover, it
is well known that uniqueness often requires strong assumptions. But it would be
interesting to try to find a weaker assumption than the one of log-concavity of the
demand. Finally, it could be interesting to study the peering behaviors in a more
general context or even to introduce more general co-opetition problems because
these ‘games’ relies on the choice an optimal solution in a set of parametrized
strategic equilibria.

Appendix

A. PROOF OF PROPOSITION 1

At equilibrium, one knows that:

((m∗ta )t∈Ta) ∈ arg max
((m∗ta )t∈Ta )

∑
s∈S(Ta)

∑
t∈S−1(s)∩Ta

αts

·mt
α ·Ds


 ∑
t∈S−1(s)

αts


c(t)+mt

a +
∑
a′∈t
a′ �=a

m∗t − a′





Hence

((m∗ta )t∈Ta) ∈ arg max
((m∗ta )t∈Ta )

∑
s∈S(Ta)


 ∑
t∈S−1(s)∩Ta

αts ·mt
α




·Ds


rs + ∑

t∈S−1(s)

αts ·mt
a +

∑
j∈Is\{i}

σ ∗j




It remains (i) to notice that this optimization problem is additively separable and
(ii) to apply a change of variables in order to conclude that:

∀s ∈ S(T ),∀i ∈ Is, σ ∗i,s ∈ arg max
σi,s∈R+

σi,sDs


σi,s + ∑

j∈Is\{i}
σ ∗j,s + rs


 �
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B. PROOF OF PROPOSITION 2

Because (σ̃ sa )a∈As is an equilibrium of the sth generic game it follows that:

∀s ∈ S(T ),∀a ∈ As, σ̃ sa ∈ arg max
σ sa∈R+

σ sa ·D

σ sa + ∑

a′∈As\{a}
σ̃ sa + rs




but ∀s ∈ S(T ), ∀a ∈ As , ∑t∈Ta∩S−1(s) α
t
s · m̃t

a = σ̃ sa , hence:

∀s ∈ S(T ),∀a ∈ As,
 ∑
t∈Ta∩S−1(s)

αts · m̃t
a


 ∈ arg max

(mta)t∈Ta∩S−1(s)


 ∑
t∈Ta∩S−1(s)

αts ·mt
a


 ·Ds(ps)

with ps =∑t∈S−1(s) α
t
s

(
c(t)+∑ a′∈t

a′ �=a
m̃t
a′

)
+∑t∈Ta∩S−1(s) α

t
s ·mt

a.

From that point of view any vector (m̃t
a)t∈Ta∩S−1(s) of margins which satisfies∑

t∈Ta∩S−1(s) α
t
s · m̃t

a = σ̃ sa also solves:

∀s ∈ S(T ),∀a ∈ As,

(m̃t
a)t∈Ta∩S−1(s) ∈ arg max

(mta)t∈Ta∩S−1(s)


 ∑
t∈Ta∩S−1(s)

αts ·mt
a


 ·Ds(Ps)

The reader also notices that for one agent a ∈ As the whole set of margins
which appears in the preceding equation for a given s ∈ S(T ) never reappears for
a s′ �= s. One can therefore sum these optimization problems of s ∈ S(T ) and even
claim that (m̃t

a)t∈Ta optimizes the sum. Hence:

∀a ∈ As, (m̃t
a)t∈Ta ∈ arg max

(mta)t∈T

∑
s∈S(Ta)




 ∑
t∈Ta∩S−1(s)

αts ·mt
a


 ·Ds(ps)




Finally because each agent a ∈ A is in at least one As , the preceding equation
is true ∀a ∈ A. But in this case ((m̃t

a)t∈T a )a∈A is an equilibrium of the complete
game.

C. PROOF OF PROPOSITION 3

Let %∗−i be the fixed-point of ϕ. It follows that φ(%∗−i ) = n
n−1%

∗
−i . Moreover we

know that:

φ(%∗−i ) ∈ arg max
%∈C(%∗−i)

(% − %−i) ·D(% + r)
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Let us now proceed to a change of variable given by σi = %−%∗−i . Having in mind
that %∗−i is a fixed-point of ϕ, φ(%∗−i ) becomes σ ∗i = 1

n−1%
∗
−i and one verifies that:

σ ∗i ∈ arg max
σi∈[0,%̄−%∗−i ]

σi ·D(σ +%∗−i + r)

But this means that σ ∗i is for each player the best response to a strategy in which the
other players choose σ ∗i = 1

n−1%
∗
−i . It is therefore a symmetric Nash equilibrium.

Reciprocally, let σ ∗i = σ ∗ for i = 1, ..., n describe a symmetric Nash equilibrium.
It follows that:

σ ∗ ∈ arg max
σi∈[0,%̄−(n−1)σ ∗]

σi ·D(σi + (n− 1)σ ∗ + r)

Let %∗−i = (n − 1)σ ∗. By an appropriate translation, the preceding optimization
program is equivalent to:

%∗ = (n · σ ∗) ∈ arg max
%∈C(%∗−i)

(% −%∗−i) ·D(% + r)

and it is a matter of fact to verify that %∗−i is fixed-point of ϕ because ϕ(%∗−i) =
n−1
n
(n · σ ∗) = (n− 1)σ ∗ = %∗−i . �

D. PROOF OF PROPOSITION 4

Let us assume the contrary. In this case there exists (σ ∗i ) a non-trivial equilibrium,
with the property that for at least two agents i0 and i1 σ ∗i0 �= σ ∗i1 . It follows that
%∗−i0 =

∑n
i=1,i �=i0 σ

∗
i �=

∑n
i=1,i �=i1 σ

∗
i = %∗−i1 . After the usual variable change, one

also knows that %∗ =∑i∈I σ
∗
i satisfies both:

%∗ ∈ arg max
%∈C(%∗−i0 )

(% −%∗−i0) ·D(% + r) and

%∗ ∈ arg max
%∈C(%∗−i1 )

(% −%∗−i1) ·D(% + r)

As long as%∗−i0 ,%∗−i1 < %̄, the solution of the two programs are interior ones. This
follows from the fact that π(%∗−i , %

∗
−i ) = π(%̄,%∗−i ) = 0 for i = i1, i2 and that

D(% + r) > 0 for % < %̄ which implies that π
(
%̄−%∗−i

2 , %∗−i
)
> 0 for i = i1, i2.

Hence %∗ satisfies both first order conditions. They are given by:{
(%∗ −%∗−i0)D′(%∗ + r)+D(%∗ + r) = 0

(%∗ −%∗−i1)D′(%∗ + r)+D(%∗ + r) = 0

But this implies that (%∗−i0 −%∗−i0)D′(%∗ + r) = 0 and because %∗−i0 �= %∗−i1 that
D′(%∗ + r) = 0 which is a contradiction.
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In order to be complete, it remains to verify that a non-trivial equilibrium (σ ∗i )i∈I
has the property that %∗−i < %̄. So let me assume that %∗−i � %̄. Because we
consider non-trivial equilibria

∑
i∈I σ

∗
i � %̄, it follows that %∗−i = %̄. In this case,

any agent i′ �= i has an incentive to lower σi′ in order to realize a strictly positive
profit. But this is in contradiction with the notion of equilibrium.

E. PROOF OF PROPOSITION 5

It is a matter of facts to verify that f (%−i ) is well-defined because D(p) is con-
tinuous and C(%−i ) = [%−i , %̄] is non empty and compact. Let us now verify that
f (%−i ) is non decreasing. In order to obtain this result, one first notices that the
set-valued function C is monotone nondecreasing because for ∀%′−i , %′′−i ∈ [0, %̄]
with %′−i < %′′−i . Concerning this function C, one also observes ∀%′ ∈ C(%′−i )
and ∀%′′ ∈ C(%′′−i), min{%′, %′′} ∈ C(%′−i ) and max{%′, %′′} ∈ C(%′′−i ). If
one wants to apply theorem 4 (p. 163) of Milgrom–Shannon [16] in order to
prove that f (%−i) is non decreasing, it remains to verify that the profit func-
tion π(%,%−i) satisfies the strict single crossing property (see Milgrom–Shannon
[16]) as long as D(p) is strictly decreasing (that is for non-trivial equilibria). To
verify this point let us choose %′ > %′′ and %′−i > %′′−i and let us verify that
π(%′, %′′−i ) � π(%′′, %′′−i )⇒ π(%′′, %′−i ). By computation, one obtains:

π(%′, %′′−i ) � π(%′′, %′′−i )
⇔ (%′ −%′′−i ) ·D(%′ + r) � (%′′ −%′′−i ) ·D(%′′ + r)
⇔ %′ ·D(%′ + r)−%′−i ·D(%′ + r)
� (%′′ −%′′−i ) ·D(%′′ + r)+ (%′′−i −%′−i ) ·D(%′ + r)

Because %′′−i −%′−i < 0 and D(%′ + r) is strictly decreasing, this implies that:

⇒ (%′ −%′−i )D(%′ + r) > (%′′ −%′′−i )D(%′′ + r)+ (%′′−i −%′−i )D(%′′ + r)
⇔ (%′ −%′−i )D(%′ + r) > (%′′ −%′−i )D(%′′ + r)
⇔ π(%′, %′−i ) > π(%′′, %′−i )

and this ends the proof. �
F. PROOF OF PROPOSITION 6

Obvious.

G. PROOF OF PROPOSITION 7

Let us first check the uniqueness of the fixed point of ϕ(%−i ). This property is
obtained if φ(%−i ) = {% ∈ R+|% ∈ arg max

%∈C(%−i)
π(%,%−i)} is a continuous function
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with the property ∀%−i ∈]0, %̄[, φ′(%−i ) < n
n−1 . In this case ϕ(%−i) = n−1

n
φ(%i)

is continuous and ∀%−i ∈]0, %̄[, ϕ′(%−i) < 1. It therefore remains to study the
optimization problem which defines φ(%−i ). One first notices that an optimum
never meets the boundary of C(%−i ) as long as %−i < %̄. This follows from the
fact that π(%−i , %−i ) = π(%̄,%i) = 0 and lim%→%̄ ∂%π(%,%−i) < 0 because
limp→p̄− D′(p) < 0. Thus any solution of the preceding program satisfies, by the
first order condition, D(% + r)+ (% −%−i )D′(% + r) = 0. Moreover if D(p) is
strictly log-concave on ]0, p̄[, one verifies that:

∀p ∈]0, p̄[, D′′(p) ·D(p)− (D′(p))2
(D(p))2

< 0

It follows that the second order condition of the preceding optimization problem is
also verified. In fact by computation, one obtains:

2 ·D′(% + r)+ (% −%−i ) ·D′′(% + r)
= 2 ·D′(% + r)− D(% + r)

D′(% + r) ·D
′′(% + r)

= 2 · (D′(% + r))2 −D(% + r) ·D′′(% + r)
D′(% + r) < 0

because the strict log-concavity of D(p) induces that ∀% ∈]%−i , %̄[
2 · (D′(% + r))2 −D(% + r) ·D′′(% + r) > (D′(% + r))2

−D(% + r) ·D′′(% + r) > 0

So let us apply the implicit function theorem to the first order conditions in
order to check that φ′(%−i) < n

n−1 . But computation one has:

∀%−i ∈]0, %̄[ σ ′(%−i ) = (D′(% + r))2
2 · (D′(% + r))2 −D(% + r) ·D′′(% + r)

But log-concavity implies that:

(n+ 1)

n
· (D′(% + r))2 −D(% + r) ·D′′(% + r) > 0

if one multiplies this equation by n and adds (n − 1) · (D′(% + r))2 to the two
members one obtains:

(2n · (D′(% + r))2 − n ·D(% + r) ·D′′(% + r)) > (n− 1) · (D′(% + r))2

Hence φ′(%−i ) < n
n−1 .

Let us now compute the profit of a firm at an equilibrium. Because an equilib-
rium is deduced from a fixed point of ϕ(%−i) this one also satisfies φ(%i), one
even knows that φ−1(%) = D(%+r)

D′(%+r) + %. Thus % ≡ n
n−1%−i verifies − D(%+r)

D′(%+r) =
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1
n
% ≡ σi . The profit of a firm is therefore, at equilibrium, given by π(%, r) =
− D(%+r)
D′(%+r) · D(% + r) with − D(%+r)

D′(%+r) = 1
n
%. In order to simplify the computa-

tion of the derivatives of this function, let us now introduce a variable change
given by p = % + r and let us define h(p) = D(p)

−D(p) > 0. The profit becomes

π(p) = D(p) · h(p) with p−r
n
= h(p). Because h(p) = −

(
d(log(D(p)

dp

)−1
, it

follows by the log-concavity assumption that h′(p) < 0. By the implicit function
theorem, one also remarks that ∂p

∂n
= h(p)

1−nh′(p) > 0 and that ∂pF
∂rF
= 1

1−nh′(p) > 0. It

remains to notice that dπ
dp
= D′(p) · h(p)+ h′(p) ·D(p) < 0 in order to conclude

that ∂nπ(n, r) < 0 and that ∂rπ(n, r) < 0. �

H. PROOF OF PROPOSITION 8

Let us consider the following optimization program

max
((αts)t∈S−1(s))

πs(#As, rs) s.t.
∑

t∈S−1(s)

αts = 1

One first notices that a firm only activates one travel. Let us suppose the contrary
and let us denote by t1 and t2 two activated travels. Because the travels are different
the number of activities #AS involved in the production of the service s satisfies
#AS > max{n(t1), n(t2)}. Moreover rs = α ·c(t1)+(1−α)·c(t2) > min{c(t1), c(t2)}
for α ∈]0, 1[. By Proposition 7, it follows that:

∀α ∈]0, 1[ πs(#As, rs) < πs(max{n(t1), n(t2)},min{c(t1), c(t2)})
Finally if for instance c(t1) = min{c(t1), c(t2)} then πs(n(t1), c(t1)) which is the
desired contradiction.

The optimal road choice program can therefore be rewritten as:

max
t∈S−1(s)

{πs(n(t), c(t))}

But one also knows by assumption that shorter travels are cheaper (i.e. n(t) <
n(t ′) ⇒ c(t) < c(t ′)). This firm has therefore a strong incentive to choose the
travel t ∈ T ns =

{
t ∈ T |t ∈ arg mint∈S−1(s){n(t)}

}
. Moreover because travels of the

same length may not have the same cost. One can restrict the set of optimal travels
to T ∗s =

{
t ∈ T |t ∈ arg mint∈Tn{c(t)}

}
. The optimal strategy therefore consists in

randomly choosing a travel in the set of cheapest and shortest travel T ∗s .

I. PROOF OF PROPOSITION 9

Obvious.
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